[1] YAN G,CHEN J,BAI Y,et al.A survey on fault diagnosis approaches for rolling bearings of railway vehicles[J].Processes,2022,10(4):724. [2] TANG M,LIAO Y,DUAN R,et al.Bearing fault diagnosis based on the maximum squared-enveloped multipoint kurtosis morphological deconvolution[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-11. [3] MCDONALD G L,ZHAO Q,ZUO M J.Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255. [4] 栗龙强,刘永强,廖英英.基于粒子群优化MCKD的轴承故障诊断方法[J].轴承,2020,487(6):45-50. [5] 刘好博,郝洪涛,丁文捷.基于IMCKD和MCCNN的滚动轴承故障诊断方法[J].振动与冲击,2022,41(7):241-249. [6] 张俊,张建群,钟敏,等.基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断[J].振动.测试与诊断,2020,40(2):287-296,418. [7] 潘昕怡,岳建海.基于参数优化的MCKD的滚动轴承早期故障诊断[J].噪声与振动控制,2021,41(5):109-113,218. [8] EBERHART R C,GROVES D J,WOODWARD J K.Deep swarm:nested particle swarm optimization[C]//2017 IEEE Symposium Series on Computational Intelligence(SSCI).[S.l.]:IEEE,2017:1-6. [9] 胡堂清,张旭秀,曹晓月.一种动态调整惯性权重的混合粒子群算法[J].电光与控制,2020,27(6):16-21. [10] 刘福康,杨光永,王林,等.基于IAO-MCKD的电机轴承故障诊断[J].组合机床与自动化加工技术,2022,582(8):71-74. |