[1] MAO T,CHEN W,FU L,et al. Fault diagnosis of complex hydraulic system based on fast Mahalanobis classification system with high-dimensional imbalanced data[J].Measurement,2023,214:112773. [2] ZHU Y,TANG S,YUAN S.Multiple-signal defect identifi-cation of hydraulic pump using an adaptive normalized model and S transform[J].Engineering Applications Artificial Intelligence,2023,124:106548. [3] BAI X,LING H,LUO X,et al.Reliability and availability evaluation on hydraulic system of ship controllable pitch propeller based on evidence theory and dynamic Bayesian network[J].Ocean Engineering,2023,276:114125. [4] CHAO Q,SHAO Y,LIU C,et al.Health evaluation of axial piston pumps based on density weighted support vector data description[J].Reliability Engineering & System Safety,2023,237:109354. [5] CHAO Q,SHAO Y,LIU C,et al.Health evaluation of axial piston pumps based on density weighted support vector data description[J].Reliability Engineering & System Safety,2023,237:109354. [6] LIU L,LIU J,ZHOU Q,et al.Machine learning algorithm selection for windage alteration fault diagnosis of mine ventilation system[J].Advanced Engineering Informatics,2022,53:101666. [7] YANG P,CHEN J,ZHANG H,et al.A fault identification method for electric submersible pumps based on DAE-SVM[J].Shock and Vibration,2022,2022(1):5868630. [8] CASTELLANOS M B,SERPA A L,BIAZUSSI J L,et al.Fault identification using a chain of decision trees in an electrical submersible pump operating in a liquid-gas flow[J].Journal of Petroleum Science and Engineering,2020,184:106490. [9] 何鹏飞,万洪平,黄国勇.基于元迁移学习的压燃式活塞发动机气门故障诊断研究[J].现代电子技术,2024,47(18):29-34. [10] 刘建伟,宋志妍.循环神经网络研究综述[J].控制与决策,2022,37(11):2753-2768. [11] 谢远东,雷文平,韩捷,等.全矢RNN的轴承故障诊断研究[J].机械设计与制造,2021(9):27-31. [12] 陈吉清,冯雨佳,兰凤崇,等.基于1dCNN-LSTM量化单体异常性的动力电池故障诊断方法[J].汽车工程,2024,46(7):1177-1188. [13] 程哲,罗奕,王腾飞,等.基于故障树和LSTM-SVM的稀土电解给料自动辅机故障诊断方法[J].机床与液压,2024,52(1):217-224. [14] 黄聪,周军晖,董晋明.基于EEMD和LSTM的轴承故障识别模型[J].机械设计,2024,41(8):96-102. [15] 张小龙,汪曦,于晓光,等.基于VMD和LSTM模型的航空液压管路卡箍故障诊断[J].液压与气动,2022,46(8):26-33. [16] 火久元,李超杰,于春潇.基于Transformer的多标签工业故障诊断方法研究[J].振动与冲击,2023,42(18):88-99. [17] 刘晨宇,李志农,熊鹏伟,等.融合路径聚合网络的Swin Transformer的故障诊断方法研究[J].振动与冲击,2024,43(18):258-266. [18] 周海成,石恒初,曾令森,等.基于关系超图增强Transformer的智能站二次设备故障诊断研究[J].电力系统保护与控制,2024,52(12):123-132. [19] 付帅,郭小英,白茹意,等.改进的CloFormer模型与有序回归相结合的年龄评估方法[J].计算机应用,2024,44(8):2372-2380. [20] 胡新雨,郁海彭,何智,等.基于马氏聚类和前馈神经网络的风力机故障诊断[J].机床与液压,2024,52(12):217-223. [21] 张天帅,刘金涛,王良.基于深度可分离卷积神经网络的水声目标分类研究及FPGA实现[J].中国海洋大学学报(自然科学版),2024,54(8):152-165. [22] 李刚,孟坤,贺帅,等.考虑特征耦合的Bi-LSTM变压器故障诊断方法[J].中国电力,2023,56(3):100-108,117. [23] 樊杰杰,邱春霞,樊意广,等.基于连续小波变换和机器学习的小麦产量预测[J].光谱学与光谱分析,2024,44(10):2890-2899. [24] UGLI O,LEE K,LEE C.Automatic optimization of one-dimensional CNN architecture for fault diagnosis of a hydraulic piston pump using genetic algorithm[J].IEEE Access,2023,11:68462-68472. [25] 钟建华,黄聪,钟舜聪,等.基于t-SNE降维方法的滚动轴承剩余寿命预测[J].机械强度,2024,46(4):969-976. |