现代制造工程 ›› 2025, Vol. 533 ›› Issue (2): 44-53.doi: 10.16731/j.cnki.1671-3133.2025.02.006

• 机器人技术 • 上一篇    下一篇

基于克里金法的工业机器人定位误差预测补偿*

史艳琼, 戴尔愉, 杨永辉   

  1. 安徽建筑大学机械与电气工程学院,合肥 230601
  • 收稿日期:2024-06-11 出版日期:2025-02-18 发布日期:2025-02-27
  • 通讯作者: 戴尔愉,硕士研究生,主要研究方向为机器视觉及机器人标定。E-mail:2167492710@qq.com
  • 作者简介:史艳琼,博士,副教授,主要研究方向为三维机器视觉技术及应用、机器人视觉感知与控制技术等。E-mail:yqshi@ahjzu.edu.cn
  • 基金资助:
    *安徽省科技重大专项项目(202203a05020022);安徽建筑大学校引进人才及博士启动基金项目(2019QDZ16)

Prediction and compensation of positioning errors in industrial robotsbased on Kriging method

SHI Yanqiong, DAI Eryu, YANG Yonghui   

  1. School of Mechanical and Electrical Engineering,Anhui Jianzhu University,Hefei 230601,China
  • Received:2024-06-11 Online:2025-02-18 Published:2025-02-27

摘要: 针对工业机器人绝对定位精度不高的现状,提出一种综合考虑几何误差和非几何误差影响因素的克里金预测定位误差的方法。首先,采用三维动态跟踪测量系统测量工业机器人工作空间中一组点的位置误差,通过位置误差构建实验变异函数;其次,采用粒子群算法结合克里金方法进行实验变异函数的参数寻优,得到最优模型和参数;然后,通过克里金方程结合最优实验变异函数模型求解权重系数和拉格朗日乘数,并利用克里金预测方程对定位误差进行预测;最后实施补偿并进行对比验证。实验结果表明,绝对位置误差平均值由1.048 9 mm减小到0.178 6 mm,精度提高了82.97 %;均方根值由0.393 7 mm减小到0.058 5 mm,精度提高了85.14 %,提高了工业机器人的绝对定位精度。

关键词: 克里金, 几何误差, 非几何误差, 粒子群, 误差预测补偿

Abstract: Aiming at the current situation that the absolute positioning accuracy of industrial robots is not high,a method of Kriging prediction of positioning error with comprehensive consideration of geometrical and non-geometrical error influencing factors was proposed. Firstly,a 3D dynamic tracking measurement system was used to measure the position errors of a set of points in the workspace of the industrial robot,and the experimental variational function was constructed from the position error; secondly,the particle swarm algorithm combined with the Kriging method was used for parameter optimization of the experimental variational function to obtain the optimal model and parameters; then,the weight coefficients and Lagrange multipliers were solved by Kriging equation combined with the optimal experimental variational function model,and the Kriging prediction equation was utilized to predict the positioning error;finally,the positioning errors were compensated and the results were veried. Experimental results show that the average absdute positioning error decreased from 1.048 9 mm to 0.178 6 mm,with an increase in accuracy of 82.97 %; the root mean square error decreased from 0.393 7 mm to 0.058 5 mm,with an increase in accuracy of 85.14 %,verifying the efficiency and practicality of this method.

Key words: Kriging, geometric error, non-geometric error, particle swarm, error prediction compensation

中图分类号: 

版权所有 © 《现代制造工程》编辑部 
地址:北京市东城区东四块玉南街28号 邮编:100061 电话:010-67126028 电子信箱:2645173083@qq.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn